
The Long Quest for Computational Thinking

Matti Tedre
Stockholm University, DSV 

Kista, Sweden
matti.tedre@dsv.su.se

Peter J. Denning
Naval Postgraduate School

Monterey, CA, USA
pjd@nps.edu

ABSTRACT
Computational thinking (CT) is a popular phrase that refers
to a collection of computational ideas and habits of mind
that people in computing disciplines acquire through their
work in designing programs, software, simulations, and com-
putations performed by machinery. Recently a computa-
tional thinking for K–12 movement has spawned initiatives
across the education sector, and educational reforms are un-
der way in many countries. However, modern CT initia-
tives should be well aware of the broad and deep history
of computational thinking, or risk repeating already refuted
claims, past mistakes, and already solved problems, or los-
ing some of the richest and most ambitious ideas in CT.
This paper presents an overview of three important histor-
ical currents from which CT has developed: evolution of
computing’s disciplinary ways of thinking and practicing,
educational research and efforts in computing, and emer-
gence of computational science and digitalization of society.
The paper examines a number of threats to CT initiatives:
lack of ambition, dogmatism, knowing versus doing, exag-
gerated claims, narrow views of computing, overemphasis
on formulation, and lost sight of computational models.

CCS Concepts
•Social and professional topics→History of comput-
ing; Computational thinking;

Keywords
Computer science education; Computational thinking; CSER;
Computational ideas; History of computational thinking;
Disciplinary ways of thinking and practicing

1. INTRODUCTION
Computational thinking (CT) has become the subject of

worldwide attention in recent years as part of multiple efforts
to bring computer science into all K–12 schools. The leaders

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Koli Calling 2016, November 24 - 27, 2016, Koli, Finland
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4770-9/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2999541.2999542

of the movement have proposed definitions, a body of knowl-
edge, and assessment methods for CT [1, 2]. They have some
impressive achievements, including the training of 10,000 CS
teachers in the US, a new Advanced Placement (AP) pro-
gram, and a set of“CS principles”courses at universities that
receive graduates of the new AP program. CSTA (computer
science teachers’ association), code.org, and K12CS.org have
been working on detailed curriculum guidelines and obtain-
ing political support at the US federal and state level to push
computer science into all K–12 schools. Similar initiatives
have quickly emerged in other countries, too [3, 4].

The current movement began in 2006 with an essay by
Jeannette Wing [5]. Her idea was that everyone would ben-
efit from learning to think like a computer scientist [6]. How-
ever, the movement has been criticized for vagueness, am-
biguous definitions and visions of CT, and arrogance [4], as
well as for bold, unsubstantiated claims about the universal
benefit of CT [3]. The computing education community has
found it hard to find a consensus on definition of CT [4].
The multiple CT visions, although inspiring and ambitious,
do not agree on what exactly should be taught about CT,
how to assess whether students have learned CT, and who
are the main beneficiaries of CT.

Our purpose here is to deepen and broaden discussions
about CT by taking a careful look at the long and rich his-
tory of CT as well as its ambitious visions over the years.
Aho’s definition of CT stands out for its exceptional clarity:
Computational thinking is the “thought processes involved
in formulating problems so their solutions can be represented
as computational steps and algorithms” [7]. Aho was re-
flecting an idea about thought processes in computing that
had been in play since the 1950s. Many early pioneers re-
garded computational, algorithmic, or procedural thinking
as an important skill set for those who design and implement
computations. The new CT movement aimed to include also
those who use computational tools and those who engage in
step-by-step procedures [5]. The attempt to broaden the CT
audience moved into uncharted territory, where there is less
certainty that tool users and procedure followers need CT
or benefit from it.

This survey describes the historical development of CT
and the intellectual ideas that drove its development. In the
process we will examine various claims about CT and will
conclude some of them are unsubstantiated.

We see three reasons to review CT and its claims from a
historical perspective. Firstly, understanding the long his-
tory of CT is a matter of academic rigor, “standing on the
shoulders of giants.” When researchers do their homework

120

Tedre, Matti; Denning, Peter J. (2016) The Long Quest for Computational 
Thinking. Proceedings of the 16th Koli Calling Conference on Computing 
Education Research, November 24-27, 2016, Koli, Finland: pp. 120-129.

http://dx.doi.org/10.1145/2999541.2999542


well, they know what previous generations of scientists have
tried and done, and where they have succeeded and failed.
They avoid “reinventing the wheel” by acknowledging pre-
decessors who built the foundations on which the current
generation of researchers is now working. In this paper we
will suggest that a lack of knowledge about CT’s long and
rich history may lead to weaker and less ambitious versions
of CT than we have seen in the past, causing CT to diminish,
not progress.

Secondly, strong unsubstantiated claims create expecta-
tions about CT that cannot be fulfilled. We will see that
some bold claims of CT have repeatedly been made and
refuted over several decades. An example is the claim of
automatic skill transfer from CT to different knowledge do-
mains, which was debunked in the 1980s [8] but which was
repeated so persistently that even a recent 2015 book had to
explicitly repeat the extensive critique of that claim about
CT [3, pp. 27–29, 39–40]. Exaggerated claims about CT
serve no one—for eventually, when CT cannot deliver on
such claims, there will be many disillusioned educators and
consumers of education, and computer science will be seen
as an over-seller of CT. CT is powerful enough without ex-
aggerated claims.

Thirdly, the direct beneficiaries of CT—engineering, sci-
ence, and design—are deeply historical. In contrast, the be-
havior of machines and information transforming processes
studied in the computational sciences and engineering are
by nature context free: the machine is supposed to behave
in a certain well defined way irrespective of where or when
it is used. This clean, abstract view of machines and pro-
cesses is attractive to mathematicians and many scientists.
But the full picture is not so tidy. Engineers and designers
are always working to find better ways to harness effects in
an uncertain world. They are explorers and builders, often
doing their work before the science is available to support
them [9]. They are keenly interested in what works and what
does not. They must know their history to do their work.

2. DISCIPLINARY WAYS OF THINKING
AND PRACTICING

Early descriptions of computational thinking arose at a
time of great uncertainty about the nascent field of com-
puting, and especially about how it differs from other, more
established fields. In the early descriptions of computing’s
identity, Fein [10] characterized computing as an interdis-
ciplinary field and Gorn [11] as a study of mechanical lan-
guages and their processors. Zadeh [12] insisted comput-
ing is more an engineering field than a mathematical field.
Hamming [13, 14] distinguished computing from mathemat-
ics by its practical relevance and emphasis on the real world.
Forsythe [15] thought design was central to computing. Ham-
mer [16] emphasized the dramatic effects of computing on
society and the human condition. When Newell, Perlis, and
Simon published their famous 1967 defense of computer sci-
ence [17], computing had already started to claim its right-
ful place in the academia, but a shared understanding of
computing’s intellectual identity was still missing. In this
process of academic soul-seeking while honoring practical
needs, descriptions of computing’s unique disciplinary ways
of thinking and practicing started to emerge.

2.1 Clarifying Computing’s Unique
Ways of Thinking and Practicing

In the late 1950s Alan Perlis was among the first com-
puting pioneers to highlight the value of coding as a mental
tool for understanding all kinds of problems [18]. In 1960 he
argued that the value of computers is less about their use as
instruments and more about their cultivating a certain style
of reasoning about problems and designing solutions [19].
He gave the name algorithmizing to computing’s quantita-
tive analysis of the way one does things, and argued that it
had become so ingrained in our culture that everyone should
sooner or later learn it.

In the 1970s computing educators worked to justify com-
puting as a unique field separate from mathematics yet still
rigorous enough to warrant a place in the traditional re-
search universities, which shunned technological subjects in
preference to theoretically oriented subjects [20]. Over the
years many people, including pioneers like Dijkstra [21] and
Knuth [22], reaffirmed the idea that computing’s disciplinary
identity arises from its unique mental processes.

Dijkstra believed that the uniqueness of computing comes
from algorithmic thinking that was characterized by 1) mas-
tery of natural language in order to bridge the gap between
informally expressed problems and formal solutions, 2) abil-
ity to invent one’s own formalisms and concepts when solv-
ing problems, and 3) agility to switch back and forth between
semantic levels—a sort of “mental zoom lens” [21].

Knuth searched for the essence of algorithmic thinking in
mathematics texts that discussed “types of thinking” and
contrasted those with reasoning patterns used by computer
scientists [23]. He found that representation of reality, re-
duction to simpler problems, abstract reasoning, informa-
tion structures, and attention to algorithms were common
in algorithmic thinking but uncommon in mathematics. He
also found two thinking patterns used by computer scien-
tists that were not employed by mathematicians: complex-
ity and causality—considering the complexity or economy of
processing, and designing imperative procedures that create
action in the world.

Others also emphasized the importance of learning algo-
rithmic thinking [24]. Some even wished to name the field
“algorithmics” [23, 25]. By the late 1970s, the idea that algo-
rithms are the central subject matter of computer science,
and programming or designing algorithms are the central
practice, became very popular. But the computing field was
populated with people with different interests ranging from
programming and algorithms to systems and experimenta-
tion. Those divisions were not just rhetorical, they mani-
fested in very tangible ways. For instance, in the late 1970s
there was a significant “brain drain” from universities to in-
dustry of academics who could design and build computing
systems. In the US the problem was severe enough that NSF
funded a study published in 1979 and known as the Feldman
report [26]. That report concluded that the brain drain was
real and that NSF could help reverse the deterioration of
CS departments by creating new programs specifically for
systems experimentation. In 1980, the department chairs of
most CS departments in the US drafted their own report on
the problem and on what it would cost to equip the experi-
mental labs of a CS department [27]. The ACM soon signed
on and implored the NSF to help [28].

The NSF responded by funding the CSNET project (to
transfer Internet technology from the ARPANET into a net-

121



work for CS research) in 1981 and soon thereafter the Coor-
dinated Experimental Research (CER) program to support
experimental systems research. By the mid 1980s, many
people acknowledged that computer science has a broader
mandate than designing and analyzing algorithms—it also
builds systems and networks that serve as platforms and in-
frastructure to execute algorithms. This broader mandate
was further refined in 1989 by another report “Computing
as a Discipline” from ACM and IEEE, which argued that
computing was a field encompassing theory, abstraction, and
design—everything computational from algorithms to archi-
tectures, design, and networks [29].

The view of computing’s disciplinary ways of thinking
and practicing broadened over time. While some early pio-
neers had claimed algorithmic thinking was the core of the
field, later pioneers claimed that computation was the core—
systems, architectures, and design were essential but did not
completely fall within“algorithmic thinking”. That older de-
bate about algorithms versus systems has resurrected in the
CT claims today. Some modern CT initiatives emphasize
the programming and algorithm side almost to the point of
risking the exclusion of the experimental and system side of
computer science.

2.2 General-Purpose Thinking Tools
The debate about algorithmic thinking was not limited to

whether algorithms or systems characterized the field. From
the earliest days it included claims that algorithmic think-
ing would train the brain to be a better problem solver in
all fields [19]. In 1968, Forsythe [30] argued that comput-
ing’s unique ways of thinking provide general-purpose men-
tal tools which remain serviceable for a lifetime. Decade by
decade the claims became increasingly ambitious. In 1970
Minsky made the claim that programming would gradually
become more important than mathematics for early edu-
cation [31]. In 1984 Bolter [32] argued that computing is
the defining technology of the current era, and similar to
“the classical man” and “the modern man” he described the
computational image of the human, “Turing’s man,” as the
quintessential image of humanity in the computer age. In
1996 Abelson and Sussman argued that computing’s proce-
dural epistemology revolutionizes the way people think and
express what they think [33].

The phrase “general-purpose mental tool,” already men-
tioned by Perlis in 1960 [19], appeared frequently in char-
acterizations of computational thinking. For example, in
1974 Knuth [22] argued that thinking through algorithms is
a useful aid in fields from chemistry to linguistics and music.
He referred to the old adage “a person does not really un-
derstand something until he/she teaches it to someone else”.
In line with the idea of “programming to learn” instead of
“learning to program” [34], Knuth repeated the idea that
dates back to the 1950s [18]: that teaching something to a
dumb computer—that is, expressing a process as an algo-
rithm and a program—forces precision and leads to much
deeper understanding than any traditional means of think-
ing does [22].

Many people advocated the view that learning program-
ming, or procedural thinking, leads to other, related higher-
order cognitive skills: you get several birds with one stone.
In 1970 Minsky argued that the concept of procedure was
“the secret educators have so long been seeking” [31]. Knuth
wrote that his experiences have convinced him of “the ped-

agogic value of algorithmic approach; it aids in the under-
standing of concepts of all kinds” [22]. Feurzeig et al. argued
that teaching programming also improves logical and rigor-
ous thinking in general [35]. Kugel asked whether the role
of computing might be like the role of logic in the Middle
Ages, where it was supposed to “sharpen the mind” [36].
Some CT ideas captivated educators across different fields,
and the early decades of many computing magazines and
computer science education publications were replete with
descriptions of computing programs in liberal arts colleges.

3. CT FOR K–12
Translating the high ideas about computing’s general-pur-

pose thinking tools into courses in K–12 schools was a major
challenge from the beginning. In the 1980s few schools had a
computer course of any kind and most lacked teachers with
computer science knowledge. For these reasons, computer
literacy was seen by many as the first step toward getting
programming into grade-school education. Yet “literacy” in
computing terms was seen in many competing ways. Lit-
eracy in programming was called a “modern survival skill”
[37]. Other common descriptions were procedural literacy
[37], computational literacy [38], literacy in algorithmic rea-
soning [39, p.112], “the second literacy” [40], proceduracy
[41] and “the fourth literacy” (e.g., [42]). Knuth’s book Lit-
erate Programming [43] viewed programming as a medium
of logical thought. Recently Annette Vee reviewed and ana-
lyzed visions of understanding computer programming as a
literacy and proposed a way to achieve it [42].

One of the most important contributions to CT in K–
12 education arose from the empiricist side of computing’s
disciplinary debates. Crystallizing over a decade’s worth of
research by several teams of researchers, in his 1980 book
Mindstorms Seymour Papert advocated an empirical ap-
proach to knowledge construction using computers and the
logo language [44]. He described procedural thinking as
a powerful intellectual tool. His approach was thoroughly
empiricist: the tangible, physical nature of the machine
“provides a more grounded reference than can any abstract
work”—a view he and his colleagues advocated a decade be-
fore [35]. Papert appears to be the first to use the phrase
computational thinking to describe all this [44, p.182].

With his colleagues Papert also argued that programming
was a great tool for concretizing Pólya’s classic text How to
Solve It [45] on problem solving in mathematics [35]. The
connection to mathematical thinking was strong at the be-
ginning: Papert’s early work did not explicitly discuss ways
of thinking arising in computing, but in the decade after
1969 the views among his group of researchers evolved from
mathematical “rigorous thinking” [35] to “procedural think-
ing” and “computational thinking” [44].

Papert’s work on computers and education was seen by
many as a breakthrough in education. The group’s work
influenced pioneering ideas, such as Kay’s Dynabook [46],
Solomon’s work on computers and learning [47], diSessa and
Abelson’s Turtle Geometry [48], and the Boxer program-
ming environment [49]. The culmination of Papert’s work
on CT in Mindstorms was not only groundbreaking but also
comprehensive—whereas the earlier descriptions of comput-
ing’s thinking patterns were abstract, Papert tailored his
work to a deep understanding of how children learn: a fea-
ture that has played a major part in CT ever since. Papert’s
book and his follow-up essays became well known outside

122



computing circles for introducing constructionism: a vision
of student-centered, project-based discovery learning using
new technology. It was envisioned that computational ideas
could serve learning in a broad variety of subjects, from New-
ton’s laws to music, but more importantly, they “can change
the way [children] learn everything else” [44, p.8]. Papert’s
work was followed by Russ and Beynon’s empirical modeling
(e.g., [50, 51, 52]), which used computers to found knowledge
construction on purely empirical basis: learners can explore
a phenomenon and build their own models through experi-
menting, trying out their own“what if” scenarios, observing,
and measuring. Some authors anticipated that the very idea
of programming would change when computational literacy
becomes a common everyday activity for most people [38,
49].

The advocates of general computer literacy were eventu-
ally successful at getting schools to offer computer literacy
courses—but those courses often focused on the use of basic
computing applications such as word processors and spread-
sheets, and not on computing concepts. An important mile-
stone in the campaign to get better computing courses in
K–12 education occurred in 1999, when the National Re-
search Council published a report Fluency with Information
Technology, which laid out an intellectual basis of a national
education program that went beyond “computing literacy”
by teaching capabilities, concepts, and skills [53]. Larry Sny-
der, chair of the NRC panel, published an influential text-
book in 2003 for fluency courses in high schools and colleges
[54].

While advocacy of computer literacy was a rather uncom-
plicated undertaking easily justified by know-how of pro-
ductivity tools that were quickly gaining popularity, com-
putational thinking was not an easy sell. One of the big
and well-received claims of Mindstorms was that practice in
programming developed cognitive skills that increased the
students’ problem solving abilities in many domains—a shift
from “learning to program” to “programming to learn” [34].
This claim had been made repeatedly since the 1960s [31, 35,
44]. Large numbers of people argued—often without much
empirical evidence—that programming prepares students’
intellectual skills in other domains, too, or improves their
metacognitive skills [55]. Many proponents of programming
in K–12 education argued that learning how to program
would have beneficial cognitive side-effects, such as rigorous
thinking, understanding of general concepts, art of heuris-
tics, generalized capability to “debug”, problem-solving re-
lated metacognition, relativistic thinking, and epistemolog-
ical commitment [8, 35].

Critics were quick to point out that numerous studies in
developmental cognitive science and psychology of program-
ming did not support these claims and, in some cases, re-
duced student problem solving ability in other domains [8,
55, 56, 57]. The critics argued that programming is not a
unitary skill but a complex network of skills, that research
results with adults as well as children spoke against spon-
taneous transfer of cognitive skills, and that the very idea
of general domain-independent problem solving skills was
problematic [8]. Moreover, they argued, learning to program
was itself argued to be dependent on mathematical ability,
analogical reasoning, conditional reasoning, memory capac-
ity, procedural thinking, and temporal reasoning skills [8].
The general finding was that transfer happens only when
computation is taught in the same environment it will be

used in, and only then with significant practice and student
reflection [3, 55, 57, 58].

Despite the contrary results from 1980s on, many mod-
ern promoters of CT have been criticized for continuing to
claim that computational thinking enhances general cogni-
tive skills in all knowledge domains [3]. Since the early
research studies [8, 56], many education researchers have
searched for evidence but have not found any. In 1997
Koschmann weighed in with more of the same doubts and
debunked the claims referring to the analogy that learning
programming is good for children’s thinking skills just as
learning Latin once was thought to be [58]. Guzdial re-
viewed again the evidence available by 2015 and reaffirmed
there is no evidence to support the claim [3]. He reiterated
the finding that CT skills may be useful in subjects like
engineering or mathematics, and CT or programming may
transform how the student sees a problem in those domains,
but that is not transfer ; it is direct application of comput-
ing in different domains [3]. There is no significant empirical
support for the transfer claim.

Regardless, the march of computers into schools intensi-
fied through the 1990s and 2000s. In many schools today,
children have personal tablets or workstations provided by
the schools. The many reasons for this development have
little to do with the CT debates above. Justifications for
computers in schools include access to simulations and other
teaching software, access to basic programming, participat-
ing in the Internet revolution, learning 21st century skills,
preparation for employment in STEM fields, broadened so-
cial participation, allowing children to express individual
creativity, and “crossing the digital divide” [3]. These de-
velopments in education mirrored accelerating changes in
computerization of society rather than changes in general
epistemology and the scientific method. Computers entered
homes, the Internet changed the way people used comput-
ers to communicate, the Web introduced new ways to access
information and to shop, mobile technology became com-
monplace, and as the prices plummeted, the user base grew
dramatically. It has been argued that in some societies pro-
gramming has worked its way into institutional and societal
infrastructures the same way writing did earlier [42].

However, at the same time, there was a fundamental change
in how computers were seen in science. Computing revolu-
tionized the practices and principles of science and engineer-
ing, and that epistemological and methodological revolution
is the very foundation of modern computational thinking.
In terms of epistemology, computing changed some funda-
mental insights about scientific knowledge, and in terms of
methodology, computing fundamentally changed how sci-
ence is done.

4. NEW WAVE OF CT

4.1 Rise of Computational Science
Numerical analysis has always been important in science,

engineering, and management from Newton’s prolific calcu-
lations to the massive census processing tasks of the late
1800s [20, 59]. Easing the burden of calculation with ma-
chinery was a long time dream of many scientists and engi-
neers. For example, Charles Babbage offered the Difference
Engine to the British Government in 1820 as a way to make
navigation tables more reliable and eliminate shipwrecks.
The US Army sponsored research into analog computers in

123



the 1920s and electronic digital computers in the 1940s so
that they could more reliably calculate the firing parameters
of projectiles.

Scientists, familiar with numerical mathematics, have never
been strangers to computational thinking [59]. Well before
computer scientists came along many of them were already
involved in numerical analysis and large-scale tabulating op-
erations that entailed what we would today call CT [60].
After the birth of modern computing, both experimentally
as well as theoretically oriented scientists saw something in
computing to help them. In his writings about the first
stored-program computers of the 1940s, John von Neumann
described grid-oriented methods to solve differential equa-
tions found in the mathematical models of physical processes
in many fields of science. He was interested in the possibil-
ity of using numerical simulation to evaluate mathematical
models of physical process. Meanwhile, others looked to the
new electronic computers as tools to analyze large data sets
from scientific experiments.

Although a change was long bubbling under, the relation-
ship between scientists and computing changed drastically
in the 1980s. Prior to then, computing’s value in science
was primarily seen as a support for the traditions of exper-
imenters as well as theoreticians. Experimenters had new
ways to analyze large data sets. Theoreticians had numer-
ical methods for solving their equations. Over the 1980s,
computation became a third way of doing science, joining
these traditions. That change was based on the insight that
simulation could be a method in its own right. Scientists
could explore phenomena by simulating them. Simulations
could produce data for analysis, and they could allow track-
ing the behavior of systems for which no mathematical mod-
els are known. What is more, the idea of modeling a natural
process as an information process and then using computa-
tion to explore the information process opened a horizon of
new possibilities for understanding natural processes.

The supercomputer was the engine powering this revolu-
tion (see [61] for further discussion). NASA was using su-
percomputers in the early 1980s to evaluate air flows around
aircraft instead of the traditional wind tunnel, and to dis-
cover heat shield materials that would allow a space probe to
plunge deeply into Jupiter’s atmosphere before burning up.
In both these examples, the computations were part of the
process of scientific discovery and understanding. Physicist
Ken Wilson was awarded a Nobel Prize in 1982 for signifi-
cant discoveries in the phase-change behaviors of materials
under the influence of external magnetic or electrical fields—
he conducted his studies with software systems he designed
to carry out detailed and faithful simulations of materials
using a supercomputer. Soon thereafter he became an ad-
vocate for computational science—the branches of various
fields that conduct their scientific investigations using com-
puter simulations. He and others described “grand chal-
lenge”problems in their fields that would yield to algorithms
run on supercomputers [62]. Some of them used the term
“computational thinking”to describe the habits of mind they
developed while doing computational science. They turned
their campaign into a political movement that culminated
with the US Congress in 1991 passing the High Performance
Computing and Communication Act that funded research in
grand challenge problems. By 2000, leaders in many scien-
tific fields had embraced computational science. And a few
of them, notably Nobel Laureate David Baltimore in biol-

ogy [63] claimed that their fields had become information
sciences studying information processes such as DNA tran-
scription found in nature.

The shift in thinking about science was as widespread as
it was radical: Winsberg called 2000s “the age of computer
simulation” [64], Chazelle wrote that algorithmic thinking
was about to cause “the most disruptive paradigm shift in
the sciences since quantum mechanics” [65], and Newell said
most operational science was focused on information pro-
cesses [66]. The 1980s computational science revolution o-
pened a new wave of computational thinking—this time ini-
tiated not by computer scientists but by scientists in other
fields. Computer simulation became the main engine of
progress across sciences and engineering fields, and com-
putational thinking was its mental toolbox. It also fueled
another way of looking at “transfer” of CT: if natural phe-
nomena in many fields are treated as computational infor-
mation processes, then learning computing is not only useful
but essential for work in those fields. People in those fields
learn CT not by studying computer science, but by design-
ing their own computations [3]. All the fields that have set
up a computational branch—such as computational physics,
computational chemistry, and bioinformatics—are natural
fits for CT.

The idea that computation had become a “third pillar”
of science (alongside theory and experiment) led to a new
description of computing as a discipline, too. The older de-
scriptions focused on study of algorithms; the newer focused
on the study of information processes both natural and arti-
ficial [67, 68]. Within computing, the notion was that we not
only study information processes, we aim to harness them
for human purposes. The idea of harnessing led to increased
attention to design, which was one of three pillars of com-
puting articulated in 1989–the other two being theory and
abstraction [29]. Design skills became central for creating
dependable, reliable, usable, safe, and secure software. De-
sign was seen as much broader than programming or coding.
Design relies increasingly on the capacity to listen, innovate,
and propose and prototype new solutions. Design also be-
came one of the key elements of CT for many (e.g., [7]).
Most importantly, design is the bridge between the techni-
cal and theoretical realms of computing and the needs and
problems of communities and customers.

4.2 Computational Thinking Revived
In 2006, Jeannette Wing [5] revived the phrase “compu-

tational thinking” and started to market it to the broader
academic audiences. Wing’s description of CT was well
aligned with arguments made in the previous decades: CT
is a general-purpose thinking tool [22, 30, 31]; it builds on
natural and artificial information processes [67]; it is about
problem-solving, design, and the human condition [15, 21];
it has to take into account the available resources and reduce
problems to smaller parts, abstract out some concerns, and
choose appropriate representations [21, 23]. Similar to Dijk-
stra’s “mental zoom lens” [21], Wing emphasized the ability
to think at multiple layers of abstraction. Wing’s essay listed
a vast range of textbook level computing techniques, and
paired some with everyday examples: packing a school bag
is “prefetching and caching”, seeking one’s lost mittens by
retracing one’s steps is “backtracking”, and choosing a line
at a supermarket is “performance modeling for multi-server
systems” [5]. A few years later Wing presented the “Cuny-

124



Snyder-Wing” definition of CT: “the thought processes in-
volved in formulating problems and their solutions so that
the solutions are represented in a form that can be effectively
carried out by an information-processing agent”1.

Wing’s timing was opportune. The computational science
revolution was finished and well publicized. The digital-
ization of society’s major functions was proceeding at full
speed. The field of computing education research had ma-
tured [69] and a multidisciplinary understanding of peda-
gogy of programming was emerging [70]. Many educators
and political leaders were interested in STEM education
and willing to include computer science in the definition
of STEM. Scientists from many fields had embraced CT in
their fields. Wing’s formulation struck a resonant chord. She
successfully used her position at NSF to spread word about
CT and rally people around what soon became a movement
to push CT into K–12 education.

Wing’s rallying cry was successful on a number of lev-
els, as witnessed by surveys on CT today [3, 4]. Some CT
initiatives were deep and thoughtful, and represented the
full richness of various CT visions. For example, major or-
ganizations like CSTA (Computer Science Teachers Associa-
tion), CAS (Computing at School, a subsidiary of the British
Computer Society), and ACARA2 (Australian Curriculum,
Assessment, and Reporting Authority) presented their own
frameworks for computational thinking. CSTA’s framework
involved problem formulation, data organization and anal-
ysis, abstractions (including models and simulations), algo-
rithmic thinking, evaluation of efficiency and correctness,
and generalization and transfer to other domains [1]. CAS’s
framework consisted of a similar list: logical reasoning, al-
gorithmic thinking, decomposition, generalization, patterns,
abstraction, representation, and evaluation [2]. Both pre-
sented a rich portrayal of CT complete with skills, attitudes,
useful techniques, and ideas for the classroom. After CT be-
came a popular theme in K–12 education, there have been
numerous articles, research studies, blog posts, and essays
written on the topic. Different accounts of and approaches
to CT have filled journals and books [3]. Surveys [4, 71]
have charted the perspectives, definitions, and practices of
CT in schools.

4.3 Risks Looming Over CT
In the enthusiasm to spread computational thinking, there

is a risk of losing sight of CT’s historical roots and of making
claims that cannot be fulfilled. We have listed below seven
such risks.

Lack of Ambition. Lack of historical insight and “rein-
venting the wheel” may lead to CT initiatives that are wa-
tered down versions of their 1980s predecessors. Decades
earlier people like Wilson [62], Papert [44, 72], Russ, and
Beynon [50, 51, 52] imagined a methodological and episte-
mological revolution—a transformation in how knowledge is
produced, how scientific findings are made, and how learn-
ing happens in a thoroughly empiricist environment. Bolter
[32] described how the computer redefined notions of space,
time, progress, language, memory, creation, and intelligence.
DiSessa [38] discussed major epistemological shifts in his em-
piricist visions of learning. Those visions were backed by the

1https://www.cs.cmu.edu/link/
research-notebook-computational-thinking-what-and-why
2http://www.australiancurriculum.edu.au/technologies/
key-ideas

info-computational revolution of science [73] and the rapid
digitalization of society’s functions and recently people’s ev-
eryday lives. It has been argued that programming has be-
come an integral part of our socially constructed reality—a
building block of our mental and societal infrastructure—
and that our conceptions of literacy must account for pro-
gramming and other forms of digital composition [42].

CT initiatives that focus solely on programming tools and
techniques market a tasteless, scentless view of computing
that emphasizes analytical abstract world far distant from
the hands-on dirty complexities of the real world. In the
early stages of the computer revolution, the focus on cal-
culation may have justified a programming-and-techniques
view, but since the 1980s the revolution has produced radi-
cal changes in the way we see the world and move in it. CT
is no longer a way of adding new facts and statements to
the computing body of knowledge. It is new, radically dif-
ferent way of looking at the world. It now aims for insight,
understanding, more productive practice, and even wisdom.
These fundamental changes should not go unheeded in K-12
education.

Dogmatism. In our excitement about the “unreasonable
effectiveness” [74] of computing in thousands of topics, we
should be generous and inclusive as were our holistic and plu-
ralistic predecessors. Papert, for instance, was explicit that
he does not advocate CT as the “best” way of thinking—he
declared his openness to alternative approaches: in Papert’s
words and in the spirit of epistemological pluralism [75], true
computer literacy is knowing when it is appropriate to make
use of computers and computational ideas [44, p.155] while
continuing to be open for alternative ways of knowing. In
Bolter’s description, humanity in the computer age does not
speak of “destiny” but “options” [32].

In particular, we should not claim that CT is the best
method of thinking and problem solving. Many other kinds
of thinking have been invaluable in advancing science and
technology and have been advocated by educators—for ex-
ample, engineering thinking, science thinking, systems think-
ing, logical thinking, rational thinking, network thinking,
ethical thinking, design thinking, critical thinking, and more.
If all we have to work with is CT, our view of the world is
diminished.

Knowing Versus Doing. The increasingly popular ar-
gument that CT is a skill rather than a particular set of
applicable knowledge [1, 2] is remarkably light on what con-
stitutes the skill or how to assess it. For example, the CSTA
and CAS descriptions say that computational thinkers dis-
play a few characteristic “behaviors”, but are vague about
details [1, 2]. Moreover, a teacher’s choice of educational
objects—for example, employability, cognitive skills, general
pedagogical value, basic computer concepts, or new ways of
representing and manipulating existing knowledge—affects
which skills are considered important [34].

A skill is an ability acquired over time with practice—
not knowledge of facts or information. Most approaches to
assessing CT assume that the body of knowledge—as out-
lined in the CSTA or CAS guidance—is the key driver of the
skill’s development. Consequently, we test students’ knowl-
edge, but not their competence or their sensibilities. Thus it
is possible that a student who scores well on tests to explain
and illustrate abstraction and decomposition can still be an
incompetent or insensitive algorithm designer. The teachers
sense this and wonder what they can do. The answer is, in

125

https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
http://www.australiancurriculum.edu.au/technologies/key-ideas
http://www.australiancurriculum.edu.au/technologies/key-ideas


a nutshell, to directly test for competencies.
The realization that mastering a domain’s body of knowl-

edge need not confer skill at performing well in the domain
is not new. As early as 1958, Polanyi discussed the dif-
ference between “explicit knowledge” (descriptions written
down) and “tacit knowledge” (skillful actions) [76]. He fa-
mously said: “We know more than we can say.” Polanyi
gave many examples of skilled performers being unable to
say how they do what they do, and of aspirants being unable
to learn a skill simply by being told about it or reading a de-
scription. Familiar examples of tacit knowledge are riding a
bike, recognizing a face, or diagnosing an illness. Many men-
tal skills fall into this category too, such as learning a foreign
language, programming, or thinking computationally. Every
skill is a manifestation of tacit knowledge. People learn a
skill only by engaging with it and practicing it.

To certify skills you need a model for skill development.
One of the most famous and useful models is the framework
created by Stuart and Hubert Dreyfus in the 1970s [77].
They said that practitioners in any domain progress through
six stages: beginner, advanced beginner, competent, profi-
cient, expert, and master. A person’s progress takes time,
practice, and experience. The person moves from rule-based
behaviors as a beginner to fully embodied, intuitive, and
game-changing behaviors as a master. Hubert Dreyfus gives
complete descriptions of these levels in his book On the In-
ternet [78]. We need guidelines for different skill levels of
computational thinking to support competency tests.

The CAS3 and K12CS4 organizations have developed CT
frameworks that feature progressions of increasingly sophis-
ticated learning objectives in various tracks including algo-
rithms, programming, data, hardware, communication, and
technology. These relationship between these knowledge
progressions and skill acquisition (e.g., [78]) is unclear. The
CAS framework does not discuss abilities to be acquired dur-
ing the progression. The K12CS framework gets closer by
proposing seven practices—only three of which are directly
related to competence at designing computations. Their no-
tion of practice is“way of doing things”rather than an ability
accompanied by sensibilities. Teachers who use these frame-
works may find that the associated assessment methods do
not test for the abilities they are after.

Exaggerated Claims. Despite the amount of empirical
evidence to the contrary [3, 8, 55, 56, 57, 58], bold claims
that computational thinking confers problem-solving skills
transferable to non-computational knowledge domains still
surface as if the transfer problem had never been studied.
Surely there are CT strategies that are useful in different
contexts. But over the long history of claims about such
transfer those claims have never been substantiated [3].

Lack of historical insight also risks repeating the same
mistakes again. For example the CSTA and CAS definitions
strongly overlap with the definitions of object-oriented pro-
gramming advocated in the late 1990s and later abandoned
when the US Advanced Placement curriculum founded on
them failed. These programming oriented definitions miss
the richness of computer architecture, systems, networks,
design, and computational science [29]. CT initiatives would
benefit from knowing what went wrong in earlier, similar ini-
tiatives.

3https://community.computingatschool.org.uk/resources/
2324
4https://k12cs.org

Narrow Views of Computing. Some critics of CT
have argued that computational thinking is programming in
disguise, “a battle cry for coding in K–12 education” [79].
A number of initiatives, such as Year of Code, Hour of
Code, Code.org, and European Code Week, indeed adopted
a coding-oriented view and promoted “coding” as something
all children should learn. Two risks arise if coding is ac-
cepted as the aim of CT. The first is terminological confu-
sion: “Coding” is just one part of the program construction
process and not even the part that requires the most com-
putational thinking. Many central concepts of coding—like
iteration and selection—are not even central to computa-
tional thinking.

The second risk is the implication that “coding” is the
essence of CT or CS. The myth that “CS=programming”
emerged in the 1970s, and was fueled by the software en-
gineering discussions of the 1970s. It was beaten back but
re-emerged in computer literacy pushes of the 1990s [20].
It took a sustained effort of CS educators to demonstrate
that the field is much broader than coding and to exorcise
that myth [29, 20]. That myth was never embraced by the
computing pioneers we discussed earlier [20]. Coding skills
are less and less relevant to the typical design challenges and
design tools of modern computing. CT initiatives should try
to avoid the “computing = programming” trap. A deep un-
derstanding of the disciplinary history and breadth of com-
putational thinking might help to avoid that trap.

Overemphasis on Formulation. The word “formulate”
appears frequently in CT definitions—for example, Aho [7],
Cuny-Snyder-Wing5, and Wolfram6 all say that CT is for-
mulating problems so that a computer can solve them. The
word “formulate” is being used in two different ways. One is
“design computations” and the other is “express commands
calling for a computation.” The problem with the second
is that people can issue commands or push buttons with-
out engaging in CT. Descriptions of CT are either unclear
about what they mean by formulation or they vacillate be-
tween the meanings of formulation. We would be better off
saying that CT is to design rather than to formulate.

Losing Sight of Computational Models. In his dis-
cussion of CT, Aho was explicit that computational thinking
is design relative to a computational model [7]. The com-
putational steps and algorithms are means to control and
instruct the computational model. We need to show our
students what their programs are controlling before they
can understand how to design programs that produce in-
tended effects. Computer scientists are fond of Turing ma-
chines, register machines, and advanced neural networks
(deep learning) as higher- or lower-level computational mod-
els. Every computational science has its own dominant mod-
els. For example, computational fluid dynamics uses simu-
lations of the Stokes Equation on a grid, and bioinformatics
uses string matching to sift through mounds of genome data.
Computational thinking in all these fields is not only control
of existing computational models; it is design of new ones.
CT initiatives should bear in mind the strong relationship
between CT and the behavior of machines—theoretical or
practical—because losing that insight may risk exaggerated
claims of applicability of CT.

5https://www.cs.cmu.edu/link/
research-notebook-computational-thinking-what-and-why
6http://blog.stephenwolfram.com/2016/09/
how-to-teach-computational-thinking/

126

https://community.computingatschool.org.uk/resources/2324
https://community.computingatschool.org.uk/resources/2324
https://k12cs.org
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
http://blog.stephenwolfram.com/2016/09/how-to-teach-computational-thinking/
http://blog.stephenwolfram.com/2016/09/how-to-teach-computational-thinking/


5. CONCLUSIONS
Computational thinking has come a long way since nu-

merical recipes of scientific computing and Perlis’s 1960 de-
scriptions of algorithmizing. The computational thinking
movement has successfully established itself in K-12 educa-
tion in a growing number of countries [4]. There is a large
body of empirical research on CT and learning outcomes as
well a growing body of literature on CT [3]. The latest com-
putational thinking movement has great intellectual debt to
three important historical currents.

First, the key concepts, narratives, and major arguments
of CT were worked out during many years of debate from
the 1950s to the 1990s. The numerous descriptions of al-
gorithmic thinking, computing’s unique thought patterns,
and computing’s general-purpose thinking tools are all direct
predecessors of today’s descriptions of CT. In both comput-
ing and CT, definitions varied from narrow to broad.

Second, computational thinking owes much to the many
educators who launched computing initiatives in schools.
Seymour Papert stands out for his pedagogical vision of
constructionism, wherein students learn programming by ex-
ploring and practicing it. Papert joined many of his prede-
cessors in advocating that the problem-solving skills learned
in programming carry over into other domains. If true, this
transference claim could cause a revolution in education.
However, after many thorough investigations, education re-
searchers have concluded that this claim cannot be substan-
tiated. Even so, we should not let the many other powerful
and radical empiricist ideas of Papert and others disappear
from CT discussions. There is much work left—for example,
the pedagogical and educational roles of CT [80], the need to
take each child’s individual learning style into account and
avoid a one-size-fits-all approach [44], learning how to assess
CT learning outcomes, and deciding what exactly should be
taught, on what levels, and how [3].

Third, CT owes a great debt to the computational sciences
movement begun in the 1980s. Grand challenges in science
yielded one after the next to new computational methods
and explorations backed by massive supercomputers. Com-
putational scientists proclaimed that computing had become
the third pillar of science and developed their own notions of
CT. Similarly, researchers in the social sciences and human-
ities have been making great strides from bringing powerful
computational methods into their own domains. The com-
puting revolution is spreading into all fields because of the
tremendous benefits computing brings. Many are learning
CT from engaging with computing in their fields. As we
look over all these accomplishments, and take pride that the
technology developed in our field has had such an impact, we
should resist two temptations of hubris. One is the hypoth-
esis that every domain of knowledge is ultimately reducible
to computing. The other is the belief that CT drives the
revolution, when in truth the revolution drives the spread
of CT. While computing gives a new lens to interpret the
world, it does not render other lenses obsolete. Computing
and CT should enrich science, not homogenize it.

Computational thinking—the habits of mind that many of
us have developed from designing programs, software pack-
ages, and computations performed by machines—offers very
powerful mental tools for people who design computations.
There is no need to make exaggerated claims—notably au-
tomatic transfer of CT skill across domains or about supe-
riority of CT over other ways of thinking and practicing.

CT has a rich and broad history of many competing and
complementing ideas. Many of its central ideas have been
discovered, rediscovered, rebranded, and redefined over and
over again. Many dead-ends have been found and miscon-
ceptions have been debunked, just to see them rise again in
the next iteration. Many ambitious and powerful ideas have
been all but forgotten. Ignoring the history and the work of
the field’s pioneers diminishes the computational thinking
movement rather than strengthening it.

6. REFERENCES
[1] Computer Science Teachers Association. Operational

definition of computational thinking. [Online].
Available: http://www.csta.acm.org/Curriculum/sub/
CurrFiles/CompThinkingFlyer.pdf

[2] Computing at School. Computational thinking: A
guide for teachers. [Online]. Available:
http://community.computingatschool.org.uk/files/
6695/original.pdf

[3] M. Guzdial, Learner-Centered Design of Computing
Education: Research on Computing for Everyone, ser.
Synthesis Lectures on Human-Centered Informatics.
San Rafael, CA, USA: Morgan & Claypool, 2015.

[4] L. Mannila, V. Dagiene, B. Demo, N. Grgurina,
C. Mirolo, L. Rolandsson, and A. Settle,
“Computational thinking in K–9 education,” in
Proceedings of the Working Group Reports of the 2014
on Innovation & Technology in Computer Science
Education Conference, ser. ITiCSE-WGR ’14. New
York, NY, USA: ACM, 2014, pp. 1–29.

[5] J. M. Wing, “Computational thinking,”
Communications of the ACM, vol. 49, no. 3, pp.
33–35, 2006.

[6] ——, “Computational thinking and thinking about
computing,” Philosophical Transactions of the Royal
Society A, vol. 36, no. 1881, pp. 3717–3725, 2008.

[7] A. V. Aho, “Ubiquity symposium: Computation and
computational thinking,” Ubiquity, vol. 2011, no.
January, 2011.

[8] R. D. Pea and D. M. Kurland, “On the cognitive
effects of learning computer programming,” New Ideas
in Psychology, vol. 2, no. 2, pp. 137–168, 1984.

[9] H. A. Simon, The Sciences of the Artificial, 1st ed.
Cambridge, MA, USA: MIT Press, 1969.

[10] L. Fein, “The role of the university in computers, data
processing, and related fields,” Communications of the
ACM, vol. 2, no. 9, pp. 7–14, 1959.

[11] S. Gorn, “The computer and information sciences: A
new basic discipline,” SIAM Review, vol. 5, no. 2, pp.
150–155, April 1963.

[12] L. A. Zadeh, “Computer science as a discipline,” The
Journal of Engineering Education, vol. 58, no. 8, pp.
913–916, 1968.

[13] R. W. Hamming, “Numerical analysis vs.
mathematics,” Science, vol. 148, no. 3669, pp.
473–475, April 23 1965.

[14] ——, “One man’s view of computer science,” Journal
of the ACM, vol. 16, no. 1, pp. 3–12, 1969.

[15] G. E. Forsythe, “A university’s educational program in
computer science,” Communications of the ACM,
vol. 10, no. 1, pp. 3–11, 1967.

127

http://www.csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf
http://www.csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf
http://community.computingatschool.org.uk/files/6695/original.pdf
http://community.computingatschool.org.uk/files/6695/original.pdf


[16] P. C. Hammer, “Computer science and mathematics,”
in Papers of the First IFIP World Conference on
Computer Education, B. Scheepmaker and K. L. Zinn,
Eds. Amsterdam, The Netherlands: International
Federation for Information Processing, August 24–28
1970, pp. I/65–67.

[17] A. Newell, A. J. Perlis, and H. A. Simon, “Computer
science,” Science, vol. 157, no. 3795, pp. 1373–1374,
1967.

[18] G. E. Forsythe, “The role of numerical analysis in an
undergraduate program,” The American Mathematical
Monthly, vol. 66, no. 8, pp. 651–662, 1959.

[19] D. L. Katz, “Conference report on the use of
computers in engineering classroom instruction,”
Communications of the ACM, vol. 3, no. 10, pp.
522–527, 1960.

[20] M. Tedre, The Science of Computing: Shaping a
Discipline. New York, NY, USA: CRC Press / Taylor
& Francis, 2014.

[21] E. W. Dijkstra, “Programming as a discipline of
mathematical nature,” American Mathematical
Monthly, vol. 81, no. 6, pp. 608–612, 1974.

[22] D. E. Knuth, “Computer science and its relation to
mathematics,” American Mathematical Monthly,
vol. 81, no. Apr.1974, pp. 323–343, 1974.

[23] ——, “Algorithmic thinking and mathematical
thinking,” American Mathematical Monthly, vol. 92,
no. March, pp. 170–181, 1985.

[24] J. Statz and L. Miller, “Certification of secondary
school computer science teachers: Some issues and
viewpoints,” in Proceedings of the 1975 Annual
Conference, ser. ACM ’75. New York, NY, USA:
ACM, 1975, pp. 71–73.

[25] J. F. Traub, Iterative Methods for the Solution of
Equations. Murray Hill, NJ, USA: Bell Telephone
Labs, Inc., 1964.

[26] J. A. Feldman and W. R. Sutherland, “Rejuvenating
experimental computer science: A report to the
National Science Foundation and others,”
Communications of the ACM, vol. 22, no. 9, pp.
497–502, 1979.

[27] P. J. Denning, E. Feigenbaum, P. Gilmore, A. Hearn,
R. W. Ritchie, and J. Traub, “A discipline in crisis,”
Communications of the ACM, vol. 24, no. 6, pp.
370–374, 1981.

[28] P. J. Denning, “Eating our seed corn,”
Communications of the ACM, vol. 24, no. 6, pp.
341–343, 1981.

[29] P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder,
A. Tucker, A. J. Turner, and P. R. Young,
“Computing as a discipline,” Communications of the
ACM, vol. 32, no. 1, pp. 9–23, 1989.

[30] G. E. Forsythe, “What to do till the computer
scientist comes,” American Mathematical Monthly,
vol. 75, no. May 1968, pp. 454–461, 1968.

[31] M. Minsky, “Form and content in computer science,”
Journal of the ACM, vol. 17, no. 2, pp. 197–215, 1970.

[32] J. D. Bolter, Turing’s Man: Western Culture in the
Computer Age. Chapel Hill, NC, USA: The
University of North Carolina Press, 1984.

[33] H. Abelson and G. J. Sussman, Structure and

Interpretation of Computer Programs, 2nd ed.
Cambridge, MA, USA: MIT Press, 1996.

[34] P. Mendelsohn, T. R. G. Green, and P. Brna,
“Programming languages in education: The search for
an easy start,” in Psychology of Programming, J.-M.
Hoc, T. R. G. Green, R. Samurçay, and D. J. Gilmore,
Eds. London, UK: Academic Press, 1990, pp.
175–200.

[35] W. Feurzeig, S. Papert, M. Bloom, R. Grant, and
C. Solomon, “Programming-languages as a conceptual
framework for teaching mathematics,” SIGCUE
Outlook, vol. 4, no. 2, pp. 13–17, 1970.

[36] P. Kugel, “Computer science departments in trouble,”
Communications of the ACM, vol. 31, no. 3, p. 243,
1988.

[37] B. A. Sheil, “Teaching procedural literacy,” in
Proceedings of the ACM 1980 Annual Conference.
New York, NY, USA: ACM, 1980, pp. 125–126.

[38] A. A. diSessa, Changing Minds: Computers, Learning,
and Literacy. Cambridge, MA, USA: MIT Press,
2000.

[39] J. A. Culbertson, “Whither computer literacy?” in
Microcomputers and Education, J. A. Culbertson and
L. L. Cunningham, Eds. The University of Chicago
Press, 1986, vol. 1, pp. 109–131.

[40] A. P. Ershov, “Programming: The second literacy,”
Microprocessing and Microprogramming, vol. 8, no. 1,
pp. 1–9, 1981.

[41] A. Vee, “Proceduracy: Computer code writing in the
continuum of literacy,” Ph.D. dissertation, University
of Wisconsin at Madison, Madison, WI, USA, 2010.

[42] ——, “Understanding computer programming as a
literacy,” Literacy in Composition Studies, vol. 1,
no. 2, pp. 42–64, 2013.

[43] D. E. Knuth, Literate Programming, ser. CSLI Lecture
Notes. Stanford, CA, USA: Center for the Study of
Language and Information, 1992, no. 27.

[44] S. Papert, Mindstorms: Children, Computers, and
Powerful Ideas. New York, NY, USA: Basic Books,
1980.

[45] G. Pólya, How to Solve It, 2nd ed. London, UK:
Penguin Books Ltd., 1957.

[46] A. C. Kay, “A personal computer for children of all
ages,” Xerox Palo Alto Research Center, Technical
Memo, 1972.

[47] C. Solomon, Computer Environments for Children: A
Reflection on Theories of Learning and Education.
Cambridge, MA, USA: MIT Press, 1986.

[48] H. Abelson and A. A. diSessa, Turtle Geometry: The
Computer as a Medium for Exploring Mathematics.
Cambridge, MA, USA: MIT Press, 1980.

[49] A. A. diSessa and H. Abelson, “Boxer: A
reconstructible computational medium,”
Communications of the ACM, vol. 29, no. 9, pp.
859–868, 1986.

[50] S. Russ, “Empirical modelling: The computer as a
modelling medium,” Computer Bulletin, vol. 39, no. 2,
pp. 20–22, 1997.

[51] M. Beynon, “Constructivist computer science
education reconstructed,” Innovation in Teaching and
Learning in Information and Computer Sciences,

128



vol. 8, no. 2, pp. 73–90, 2009.

[52] ——, “Modelling with experience: Construal and
construction for software,” in Ways of Thinking, Ways
of Seeing: Mathematical and other Modelling in
Engineering and Technology, C. Bissell and C. Dillon,
Eds. Berlin, Heidelberg: Springer, 2012, pp. 197–228.

[53] Committee on Information Technology Literacy, Being
Fluent with Information Technology. Washington,
DC, USA: National Academy Press, 1999.

[54] L. Snyder, Fluency With Information Technology:
Skills, Concepts, & Capabilities, 6th ed. Harlow,
Essex, UK: Pearson, 2014.

[55] R. E. Mayer, J. L. Dyck, and W. Vilberg, “Learning to
program and learning to think: What’s the
connection?” Communications of the ACM, vol. 29,
no. 7, pp. 605–610, 1986.

[56] D. H. Clements and D. F. Gullo, “Effects of computer
programming on young children’s cognition,” Journal
of Educational Psychology, vol. 76, no. 6, pp.
1051–1058, 1984.

[57] G. Salomon and D. N. Perkins, “Transfer of cognitive
skills from programming: When and how?” Journal of
Educational Computing Research, vol. 3, no. 2, pp.
149–169, 1987.

[58] T. Koschmann, “Review: Logo-as-Latin redux,” The
Journal of the Learning Sciences, vol. 6, no. 4, pp.
409–415, 1997.

[59] R. S. Westfall, Never at Rest: A Biography of Isaac
Newton. New York, NY, USA: Cambridge University
Press, 1980.

[60] D. A. Grier, When Computers Were Human.
Princeton, NJ, USA: Princeton University Press, 2005.

[61] P. J. Denning, “Remaining trouble spots with
computational thinking,” 2016, forthcoming in
Communications of the ACM.

[62] K. G. Wilson, “Grand challenges to computational
science,” Future Generation Computer Systems, vol. 5,
no. 2–3, pp. 171–189, 1989.

[63] D. Baltimore, “How biology became an information
science,” in The Invisible Future, P. J. Denning, Ed.
New York, NY, USA: McGraw-Hill, 2002, pp. 43–55.

[64] E. B. Winsberg, Science in the Age of Computer
Simulation. Chicago, IL, USA: The University of
Chicago Press, 2010.

[65] B. Chazelle, “Could your iPod be holding the greatest
mystery in modern science?” Math Horizons, vol. 13,
no. 4, pp. 14–15, 30–31, 2006.

[66] D. G. Bobrow and P. J. Hayes, “Artificial intelligence
– where are we?” Artificial Intelligence, vol. 25, pp.
375–415, 1985.

[67] P. J. Denning, “Computing is a natural science,”
Communications of the ACM, vol. 50, no. 7, pp.
13–18, 2007.

[68] P. J. Denning and C. H. Martell, Great Principles of
Computing. Cambridge, MA, USA: MIT Press, 2015.

[69] Simon, “Emergence of computing education as a
research discipline,” Ph.D. dissertation, Aalto
University, Finland, 2015.

[70] J. Sorva, “Visual program simulation in introductory
programming education,” Ph.D. dissertation, Aalto
University, Finland, 2012.

[71] S. Grover and R. D. Pea, “Computational thinking in
K–12: A review of the state of the field,” Educational
Researcher, vol. 42, no. 1, pp. 38–43, 2013.

[72] S. Papert, “An exploration in the space of
mathematics educations,” International Journal of
Computers for Mathematical Learning, vol. 1, no. 1,
pp. 95–123, 1996.

[73] G. Dodig-Crnkovic and V. C. Müller, “A dialogue
concerning two world systems: Info-computational vs.
mechanistic,” in Information and Computation:
Essays on Scientific and Philosophical Understanding
of Foundations of Information and Computation, ser.
World Scientific Series in Information Studies,
G. Dodig-Crnkovic and M. Burgin, Eds. Singapore:
World Scientific, 2011, vol. 2.

[74] R. W. Hamming, “The unreasonable effectiveness of
mathematics,” The American Mathematical Monthly,
vol. 87, no. 2, pp. 81–90, 1980.

[75] S. Turkle and S. Papert, “Epistemological pluralism:
Styles and voices within the computer culture,” Signs,
vol. 16, no. 1, pp. 128–157, 1990.

[76] M. Polanyi, The Tacit Dimension. Chicago, IL, USA:
The University of Chicago Press, 1966.

[77] S. E. Dreyfus and H. L. Dreyfus, “A five-stage model
of the mental activities involved in directed skill
acquisition,” University of California, Berkeley,
Research Report ORC-80-2, 1980.

[78] H. L. Dreyfus, On the Internet, 2nd ed. London /
New York: Routledge, 2001.

[79] Y. B. Kafai, “From computational thinking to
computational participation in K–12 education,”
Communications of the ACM, vol. 59, no. 8, pp.
26–27, 2016.

[80] C. Schulte, “Reflections on the role of programming in
primary and secondary computing education,” in
Proceedings of the 8th Workshop in Primary and
Secondary Computing Education, ser. WiPSE ’13.
New York, NY, USA: ACM, 2013, pp. 17–24.

129


	Introduction
	Disciplinary Ways of Thinking  and Practicing
	Clarifying Computing's Unique  Ways of Thinking and Practicing
	General-Purpose Thinking Tools

	CT for K–12
	New Wave of CT
	Rise of Computational Science
	Computational Thinking Revived
	Risks Looming Over CT

	Conclusions
	References



